Vector quantization of images using modified adaptive resonance algorithm for hierarchical clustering

نویسندگان

  • Natalija Vlajic
  • Howard C. Card
چکیده

A modified adaptive resonance theory (ART2) learning algorithm, which we employ in this paper, belongs to the family of NN algorithms whose main goal is the discovery of input data clusters, without considering their actual size. This feature makes the modified ART2 algorithm very convenient for image compression tasks, particularly when dealing with images with large background areas containing few details. Moreover, due to the ability to produce hierarchical quantization (clustering), the modified ART2 algorithm is proved to significantly reduce the computation time required for coding, and therefore enhance the overall compression process. Examples of the results obtained are presented, suggesting the benefits of using this algorithm for the purpose of VQ, i.e., image compression, over the other NN learning algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map

Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

Segmentation of brain MR images: a self-adaptive online vector quantization approach

We present a fully automatic algorithm for brain magnetic resonance (MR) image segmentation. The three-dimensional (3D) volumetric MR dataset is first interpolated for an adequate local intensity vector on each voxel. Then a morphology dilation filter and region growing technique are applied to extract the region of brain volume, strapping away the skull, scalp and other tissues. The principal ...

متن کامل

The Time Adaptive Self Organizing Map for Distribution Estimation

The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 12 5  شماره 

صفحات  -

تاریخ انتشار 2001